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Purpose: This paper studies the feasibility of developing a fast and accurate automatic kidney com-
ponent segmentation method. The proposed method segments the kidney into four components: renal
cortex, renal column, renal medulla, and renal pelvis.
Method: In this article, we have proposed a highly efficient approach which strategically combines
random forests and random ferns methods to segment the kidney into four components: renal cortex,
renal column, renal medulla, and renal pelvis. The proposed method is designed following a coarse-
to-fine strategy. The initial segmentation applies random forests and random ferns with a variety of
features, and combines their results to obtain a coarse renal cortex region. Then the fine segmentation
of four kidney components is achieved using the weighted forests-ferns approach with the well-
designed potential energy features which are calculated based on the initial segmentation result. The
proposed method was validated on a dataset with 37 contrast-enhanced CT images. Evaluation
indices including Dice similarity coefficient (DSC), true positive volume fraction (TPVF), and false
positive volume fraction (FPVF) are used to assess the segmentation accuracy. The proposed method
was implemented and tested on a 64-bit system computer (Intel Core i7-3770 CPU, 3.4 GHz and
8 GB RAM).
Results: The experimental results demonstrated the high accuracy and efficiency for segmenting the
kidney components: the mean Dice similarity coefficients were 89.85%, 80.60%, 86.63%, and
77.75% for renal cortex, column, medulla, and pelvis, respectively, for right and left kidneys. The
computational time of segmenting the whole kidney into four components was about 3 s.
Conclusions: The experimental results showed the feasibility and efficacy of the proposed automatic
kidney component segmentation method. The proposed method applied an efficient weighted strat-
egy to combine random forests and ferns, making full use of the advantages of both methods. The
novel potential energy features help random forests effectively segment the kidney components and
the background. The high accuracy and efficiency of our method make it practicable in clinical appli-
cations. © 2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12594]
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1. INTRODUCTION

The kidney is the most important organ in urinary system which
participates in whole body homeostasis, regulating acid-base
balance, electrolyte concentrations, extracellular fluid volume,
and blood pressure. Kidney contains four different components
with different functions, including renal cortex, renal column,
renal medulla, and renal pelvis.1 Different component of the kid-
ney can be affected by different kidney diseases.2–5 Therefore,
automatic, accurate, efficient, and robust segmentation of kidney
components has great clinical values for renal function assess-
ment, diagnosis, and treatment of kidney diseases.

However, segmentation of kidney components is still chal-
lenging due to the following reasons. Firstly, the anatomical
structures of kidney are complex. Then, the renal cortex and
renal column are connected and have similar intensity. Fur-
thermore, the boundaries between kidney and adjacent organs
such as liver and spleen are blurred. Figure 1 shows an illus-
tration of the anatomy of kidney.

Several prior papers6–14 tackled the problem of automatic
segmentation of kidney or renal cortex in different types of
images, i.e., CT or MRI images. In these studies, cortex and

column were classified into one category since they are con-
nected and have similar intensities. However, for clinical appli-
cation, such as renal cortex thickness measurement, accurate
separation of the renal cortex and renal column is needed. Chen
et al.12 proposed an automatic renal cortex segmentation
method combining oriented active appearance model (OAAM)
and graph cut (GC). In GC-OAAM, the OAAM method combi-
nes live wire15 and AAM to improve the segmentation perfor-
mance. However, live wire is difficult to extend to 3D.
Therefore, OAAM is a 2D method which cannot make use of
the context information among slices. Recently, we proposed a
3D automatic segmentation method,16 which combines active
appearance model (AAM) and random forests to segment kid-
ney into four parts accurately. Nonetheless, there are still limita-
tions in the work. The method worked well for kidneys whose
volume and structures were not significantly altered by diseases.
If diseases such as kidney failure cause kidney atrophy which
dramatically decreases the volume of kidney, the AAM trained
on the normal dataset may not performwell. Moreover, the com-
putational cost of AAM was high due to its iterative nature.

In this paper, in order to overcome the problems described
above, we introduce the state-of-the-art random ferns method
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into kidney components segmentation and combine it with the
random forests. The random forests method is a learning based
method and was first proposed by Breiman.17 Thanks to its
advantage of dealing with multiclass problem and computa-
tional efficiency for processing a huge feature space, it has
been widely applied in biomedical and computer version
domain.18–24 In recent years, the random forests method is also
widely used for medical image segmentation and detec-
tion.11,16,25–28 The random ferns method proposed by Ȍzuysal
et al.25 is an ensemble of constrained trees and was success-
fully applied in keypoints recognition29 and organ detection.30

Unlike random forests, random ferns applies a seminaive
Bayesian scheme and has a simpler and more flat structure.
Random forests and random ferns are both highly efficient and
highly fault-tolerant. But they have different tree structures
and use different features. Random forests can utilize a large
amount of 2D and 3D features which reflect voxel intensity
and local relationship information, while random ferns utilize
fern features which consist of a series of binary features indi-
cating the appearance of the patch surrounding the voxel of
interest. By combination of these two methods, different kinds
of image information can be exploited in classification. In this
paper, we effectively combine random forests and random
ferns methods. The proposed method consists of two phases:
coarse segmentation of renal cortex and fine segmentation of
kidney components. In the first phase, random forests and ran-
dom ferns are applied independently, and the intersection of
their results is obtained as the coarse segmentation of renal
cortex. Then novel potential energy features which indicate
spatial relationship between kidney tissues and adjacent organs
are extracted based on the coarsely segmented renal cortex. In
the second phase, a weighted forests-ferns method is proposed
to segment kidney into four components simultaneously.

The contributions of this paper are summarized as fol-
lows: (a) We propose an efficient weighted strategy to com-
bine random forests and ferns, which make full use of the
advantages of both methods. The random forests applies a
large number of features which indicate different kinds of
local information, while the random ferns utilizes the fern
features which describe the context information in a bigger
neighborhood. (b) The novel potential energy features are
proposed to indicate the spatial relationship of kidney com-
ponents and adjacent organs, which can help random for-
ests effectively segment the kidney components and the
background.

2. METHOD

The proposed method consists of two phases: coarse seg-
mentation of renal cortex and fine segmentation of kidney
components. In the coarse segmentation phase, the center of
kidney is first obtained by 3D Generalized Hough Transform.
Then the coarse renal cortex is obtained by random forests
and ferns, and the potential energy features are generated. In
the fine segmentation phase, a weighted forests-ferns method
incorporating the potential energy features is implemented to
segment kidney into four components. Figure 2 shows the
flowchart of the proposed method.

2.A. Coarse segmentation of renal cortex

2.A.1. ROI extraction

Before implementing random forests and ferns segmenta-
tion, in order to improve operating efficiency and reduce back-
ground interference, the center of kidney is located using 3D
Generalized Hough Transform (GHT) and the region of interest
is extracted.16 GHT can be used to detect instance of an object
with arbitrary shapes, independent of scale and orientation. Its
efficiency and robustness have been proved in many applica-
tions of different fields, especially in computer vision.31 In the
training stage, the mean shape of training kidneys served as the
template is stored in the R-table.32 In the testing stage, the nor-
mal direction for every voxel in the test image is obtained and
used as indices to lookup in the R-table. Each voxel generates a
vote to a candidate center of kidney according to the R-table.
After traversing every voxel in the testing image, the candidate
with the most votes is considered as the center of kidney. Then,
a volume with constant size around the center of kidney is
extracted, which is large enough to contain the whole kidney.

2.A.2. Feature extraction

Random forests method is capable of handling huge num-
ber of features. However, a significant number of these fea-
tures are weak features which contribute little to the decision
of the classifier. What is worse, the existence of such features
may compromise the classifier and lead to poor classification
results. This problem is usually solved by feature selection.25

In this work, information gain ratio (IGR) is used as the met-
ric to split a node in random trees. Therefore, the features

FIG. 1. Illustration of the anatomy of kidney. The renal cortex and renal column are connected and have very similar intensity. But they have different morphol-
ogy and function. [Color figure can be viewed at wileyonlinelibrary.com]
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with highest IGR are chosen for random forests. For each fea-
ture, the IGR is calculated as follows:

IGR¼GðRÞ=IðDÞ
GðRÞ¼ InfoðDÞ� InfoRðDÞ

InfoðDÞ¼�
Xm
i¼1

pilog2ðpiÞ

InfoRðDÞ¼
Xk
j¼1

jDjj
jDj � InfoðDjÞ

IðDÞ¼�
Xk
j¼1

jDjj
D

� log2ð
jDjj
jDj Þ

(1)

In which, D is the dataset, R represents the attribute set, and
p represents the probability for D. G(R) is information gain. I
(D) is split information. Since leave-one-out strategy is
applied to evaluate the proposed method, we calculated IGR

for each leave-one-out fold of the training dataset and chose
40 best features with the highest IGR to train the RF trees.
We found that the features selected in each leave-one-out fold
were almost the same.

In coarse segmentation of cortex, for random forests, both
2D and 3D features are used. The 2D features include: Hog
features, Gabor features, Robert features and Hessian fea-
tures. Hog features provide orientation information, Gabor
features provide texture information, and Robert and Hessian
features provide edge information of objects. 3D features
include mean and variance of voxels in a block which contain
local intensity information. These features indicate different
kinds of information in a relatively small area around the
voxel of interest. Random forests method follows the naive
Bayes strategy, in which all the features are assumed indepen-
dent of each other. Namely, random forests does not utilize
the correlation between features. A pixel (v) can be classified
by conditional probability with features (fn):

C vð Þ ¼ argmaxkP Ckð Þ
YN

n¼1
PðfnjCkÞ: (2)

where C represents the class.
As will be shown in the following sections, with these fea-

tures (including potential energy features), random forests
can be successful in classifying most voxels. But it is difficult
to identify voxels near blurry boundaries, especially for the
boundary between renal cortex and column, and the bound-
ary between renal medulla and pelvis. In order to achieve cor-
rect classification for voxels near the boundaries, features
from a bigger neighborhood providing more context informa-
tion will be helpful. The fern features describe such informa-
tion using a series of binary features. In this article, as
intensity is directly related to the underlying tissue distribu-
tion, each binary feature fi is calculated from the intensities
of two voxel Ii1 and Ii2 in a relatively big patch around the
voxel of interest, defined as follows:

fi ¼ 1; if ðIi1 � Ii2Þ
0; otherwise

�
: (3)

Since the binary feature is very simple, many such features
are needed (N � 400) for accurate classification. Further-
more, the dependencies between these features are utilized.
They are evenly divided into M groups of size S = N/M.
These groups are defined as fern features utilized by random
ferns.29 A voxel can be classified using the conditional proba-
bility with fern features:

C vð Þ ¼ argmaxkP Ckð Þ
YM

m¼1
PðFmjCkÞ: (4)

where Fm is the mth fern feature consisted of S binary fea-
tures (fn) which are randomly sampled from N binary features
with the sampling without replacement strategy. Once the
order of binary features in a fern is set in the training stage, it
will not be changed later. This strategy follows a seminaive
Bayesian29 approach by modeling only some of the

FIG. 2. Flowchart of the proposed method.
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dependencies between features. In order to improve computa-
tional efficiency, binary features in each group are encoded
into a decimal fern feature.

The process of generating a forest feature and a fern fea-
ture are shown in Fig. 3. The features described above are
extracted from a cube or square around the voxel of interest.

2.A.3. Forests and ferns classification

The forest features indicate voxel intensity and local neigh-
borhoods information, while fern features indicate the appear-
ance of the relatively large area surrounding the voxel. In a
test image, renal cortex is the most discriminative in intensity,
geometry and position, while other kidney components have
intensities similar to background or other adjacent organs and
have no constant geometry. Therefore, detection of renal cor-
tex is easier than other kidney components. Here, random for-
ests and ferns are implemented to classify the ROI into the
four components and the background, and their results are
combined to find the renal cortex. Figures 4(a) and 4(b) show
the results of random forests and random ferns respectively.
One can find that in Fig. 4(a) only renal cortex and column
are detected, and they are classified as one category. In
Fig. 4(b), renal cortex is segmented roughly. But the result is

very noisy and there are many false positives in the back-
ground. However, since the segmentation error of the two
results occurs at different positions, we can obtain most renal
cortex structure by taking their intersection, as shown in
Fig. 4(c).

2.A.4. Potential energy features

As shown in Fig. 1, renal cortex and renal column have
very similar intensity and texture. Therefore, it is difficult to
separate renal column from renal cortex. The intensity and
texture of adjacent organs (background) such as spleen and
liver are similar to renal medulla. Even worse, the volume of
background tissue is much bigger than renal pelvis and renal
medulla. Therefore, renal pelvis and medulla are easily mis-
classified to background by forests classifier with traditional
features. On the other hand, for random ferns, organs near the
kidney with similar appearance and texture may also be mis-
classified as kidney component.

However, one can find that there is a relatively fixed spa-
tial relationship between the four kidney components and
organs nearby. Renal pelvis is always in the center of the kid-
ney, renal cortex is the surface layer of kidney, renal medulla
and renal column are between the renal pelvis and renal cor-

FIG. 3. Examples of feature extraction for random forests and ferns. Forest features indicate local information while fern features indicate appearance information
of a relatively large area surrounding the voxel of interest. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. (a), (b), (c) show the results of random forests, random ferns, and coarse renal cortex respectively. Red, green, blue, and yellow represent renal cortex,
column, medulla, and pelvis respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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tex, while other organs are far away from the center of kidney,
as shown in Fig. 5. Motivated by this, we propose the poten-
tial energy features (PEF), which indicate the spatial relation-
ship information to improve the segmentation of kidney.
After the center of kidney and coarse renal cortex are
obtained, the shape of the kidney can be approximated by an
ellipse with long axis Llong and short axis Lshort. The long axis
and short axis are defined as two maximum energy equipo-
tential lines, from where the energy fall alone the normal
direction. The energy is designed to fall slowly inside the kid-
ney area while fall rapidly outside the kidney. Therefore, the
potential energy features for two axes are defined as:

E1ðpÞ ¼ w
d1rðpÞ
Lrshort

þ K
(5)

E2ðpÞ ¼ w
d2rðpÞ
Lrlong

þ K
(6)

where p stands for a voxel, d1 and d2 are its distances to long
axis and short axis, respectively. w is a constant, r controls
the speed of the energy falling, and K represents a regulariza-
tion term to avoid potential energy being infinity. K and r are
set to 1 and 2 in all our experiments. Figures 6(b) and 6(c)
show the two potential energy features extracted from
Fig. 6(a).

2.B. Fine segmentation of kidney components

In this step, we add the potential energy features into the
random forests feature pool, and implement random forests
once again. For the two potential energy features, voxels

inside kidney have high and relatively stable energy. While
outside kidney, with the increase in distance between the cen-
ter of kidney and current voxel, the energy drops sharply.
Inside the kidney, although renal cortex and renal column are
similar in intensity, their potential energy values are different.
For organs outside the kidney, the values of potential energy
are very low, which separate them from tissues inside the kid-
ney. Hence, with the potential energy features, the accuracy
of random forests is improved. Renal column is separated
from renal cortex, and renal pelvis and renal medulla are not
misclassified to background, as shown in Figs. 7(d)–7(f).

Although the added potential energy features are effective,
the boundary of renal cortex and renal column is still difficult
to define. In order to improve the accuracy of segmenting
renal cortex and renal column, not only voxel intensity and
local relationship information, but also all appearance in the
block is needed. Therefore, random ferns method is also
needed in the fine segmentation step. Here, we use the results
of ferns from coarse segmentation step again and combine it
with the updated results of random forests. However, contri-
butions of forests and ferns for each part of kidney are not
equal. For example, it is easy to separate renal medulla from
cortex and column just depending on pixel intensity differ-
ence (with forests), while separating renal column from cor-
tex relies more on local structure appearance (with ferns) and
position information. Hence, we propose a weighted mecha-
nism to combine forests and ferns classifiers:

Ci ¼ argmaxj kjPj þ rjQj
� �

; j ¼ 1; 2; 3; 4; 5: (7)

where Pj is the likelihood for each class obtained by random
forests, Qj is the likelihood obtained by random ferns, kj and
rj are the weights of random forests and random ferns, respec-
tively, j is class label, and Ci is the label assigned to current
voxel. The values of j (1, 2, 3, 4, 5) indicate renal cortex, col-
umn, medulla, pelvis and background respectively. In addi-
tion, we define kj þ rj ¼ 1. In our experiment, we set weights
of forests for medulla and background bigger than ferns,
while weights of forests for cortex and column smaller than
ferns. Figures 7(g)–7(i) shows the final result of the proposed
method.

3. EXPERIMENT AND RESULTS

3.A. Image dataset and ground truth

Abdominal images were acquired during preoperative
screening from 27 subjects before kidney donation. Among
these 27 subjects, seven had only right kidney, and the rest
had both sides of kidney, in which 10 also had contrast-
enhanced CT images after nephrectomy. Therefore, there were
20 images with both kidneys, and 17 images with only right
kidney. In total, we have 37 image volumes with 57 kidneys.

The dataset was acquired from two different types of CT
scanner (Light-Speed Ultra, GE Medical Systems, Little
Chalfont, UK, and Mx8000 IDT 16, Philips, Amsterdam,
Netherlands). The in-plane pixel size ranged from 0.55 to
1 mm. The slices thickness ranged from 1 to 5 mm. Among

FIG. 5. Illustration of the spatial distribution of kidney components and back-
ground according to the distance to the kidney center. Curves with same color
mean that they have similar intensity. [Color figure can be viewed at wileyon-
linelibrary.com]
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these images, 22 images had slice thickness less than
2.5 mm, 15 images had slice thickness greater than 2.5 mm.
The slice number of original abdominal images ranged from
51 to 525. The slice number of kidney area in each abdominal
image ranged from 20 to 220.

Two independent trained observers (user1 and user2) per-
formed manual segmentation as ground truth. Both the obser-
vers were experienced radiologic technologists in hospital.
Each observer was blinded to the results of the other. The
observers manually drew the kidney components in a slice-

FIG. 6. Potential energy features of long axis and short axis. In (b) and (c), the higher intensity means higher energy. [Color figure can be viewed at wileyonline-
library.com]

FIG. 7. (a–c) are three slices of the ROI of original image; (d–f) show different slices of the result by random forests with potential energy features. (g–i)are the
final result of the proposed method. [Color figure can be viewed at wileyonlinelibrary.com]
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by-slice mode using ITK-snap software (http://www.itksnap.
org). The experimental results showed that proposed method
has a strong correlation with both user1 and user2, and here
the user1 is chosen as ground truth.

Since the dataset was not big enough to be partitioned
into training and testing sets without losing significant test-
ing capability, we applied leave-one-out strategy as a fair
way to validate the proposed method in this paper. Leave-
one-out cross-validation involves using one image as the
validation set and the remaining images in the dataset as
the training set. This is repeated until each image in the
dataset is tested.

The proposed method was validated on right and left kid-
neys separately. Note that for right kidney, one subject might
have two scans, taken before and after donation. Two training
strategies were used for validation. For the first strategy (Pro-
posed-I) is normal leave-one-out validation, for which kid-
neys before and after donation were considered different. In
order to avoid possible bias, the second strategy (Proposed-
II) is leave-one-patient-out validation. For each test data with
repeated scans, the other scan from the same subject was
excluded from the training data.

3.B. Implementation details

As mentioned in details of the data, the slice number may
vary a lot between different images. Interpolation was per-
formed before the ROI extraction, and all the images were
interpolated into 32 slices.

The image size in axial plane was 512 9 512. We chose
the ROI size as 128 9 128 9 32, which was large enough to
contain the whole kidney.

For random forests, the number of trees was set as 15, and
the maximum tree depth was set as 12. In practice, larger
number of trees and depth of tree brought little improvement
to segmentation accuracy. The number of selected features
was 40. For random ferns, the block size was set as
32 9 32 9 3. For each fern feature, the number of binary
test per fern and number of ferns were both empirically set as
18. For the weighted combination of random forests and ran-
dom ferns, kj/rj (j = 1, 2, 3, 4, 5) were set as 0.4/0.6, 0.4/0.6,
0.6/0.4, 0.5/0.5, and 0.8/0.2 respectively. The proposed
method was implemented and tested on a 64-bit system com-
puter (Intel Core i7-3770 CPU, 3.4G Hz and 8 GB RAM).

The training time of random forests on ROI was about
10 min while the training time of random ferns was only
about 20 s. This is because random ferns method has a more
concise and flat structure, and uses simpler features than ran-
dom forests. The testing time on each image for random for-
ests and random ferns were both less than 1 s. In total, the
proposed method could segment the whole kidney into four
components within 3 s, including the time for coarse
segmentation, potential energy features extraction, and fine
segmentation.

In order to assess the performance of the proposed
method, we compared our approach with three other
methods:

(1) Random forests with potential energy features (RF
with PEF). For fair comparison, the feature group and
the coarse cortex segmentation step are the same as
the proposed method. While in fine segmentation
step, only random forests method is used instead of
weighted random forests and ferns.

(2) Random forests with AAM initialization (AAM-
RF).16 This method applied AAM to initialize the
renal cortex. In kidney components segmentation step,
random forests method is applied with cortex informa-
tion obtained in AAM initialization. This method used
a large amount of 2D and 3D features but did not use
potential energy features.

(3) GC-OAAM12 (graph cut and oriented active appear-
ance model) based method. In this method, live wire
and AAM are combined to serve as the initialization
for graph cut. GC-OAAM is used to obtain renal cor-
tex precisely. Then thresholding is applied to segment
renal column, renal medulla and renal pelvis.

These methods for comparison were evaluated on right
kidneys with the first validation strategy.

3.C. Results and evaluation

Qualitative and quantitative comparisons for the pro-
posed method are provided in this section. As shown in
Fig. 8, both sides of the kidneys are segmented into four
parts by the proposed method. Figure 9 shows the segmen-
tation results of right kidney by different methods on three
different patients.

To objectively evaluate the results of the four components
of kidney: renal cortex, renal column, renal medulla, and
renal pelvis, the accuracy in terms of dice similarity coeffi-
cient (DSC), true positive volume fraction (TPVF), and false
positive volume fraction (FPVF) were calculated. DSC is
used for comparing the similarity between the automated seg-
mentation results and the ground truth. TPVF indicates the
rate of correctly detected volume compared with the ground
truth. FPVF denotes the fraction of incorrectly detected vol-
ume in the true negative volume.33

As shown in Table I, the average DSC for the segmenta-
tion of renal cortex, renal column, renal medulla, and renal
pelvis in right kidney were 90.16%, 81.01%, 86.81%, and
77.60% respectively. The average running time for segment-
ing one image is shown in Table II. One can find that the per-
formance of the proposed method is much better than the
method RF with PEF. This is mainly because the introduction
of random ferns allowed more accurate segmentation on the
boundary of renal cortex and column, as shown in
Figs. 7(d)–7(i) and the third and fourth column of Fig. 9.
The performance of the proposed method is comparable to
that of AAM-RF, but the proposed method is much more
efficient. As shown in the fifth column in Table I, the pro-
posed method can also segment the left kidney into four parts
accurately. Comparing the first and last columns of Table I,
the difference between results of the two validation strategies
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is very small. This is because the right kidney changed a lot
before and after donation. As analyzed in our previous
work,16 the volume of four kidney components increased in

most cases. The mean volume change in renal cortex,
medulla and pelvis were over 30%. Therefore, the right kid-
ney before and after operation can be considered different,

FIG. 8. The segmentation result of both left and right kidneys of one patient in different slices. The first row shows the original image. The second row shows the
ground truth and third row shows the result of the proposed method. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 9. The segmentation results of right kidney. The performance of the proposed method is better than RF with PEF especially on the boundary of renal cortex
and column, and is comparable to that of AAM-RF. [Color figure can be viewed at wileyonlinelibrary.com]
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and leave-one-out validation will not lead to much biased
results compared to leave-one-patient-out validation.

Although the manual segmentation of user 1 is chosen as
ground truth to evaluate the performance in Table I, the per-
formance indices as compared to the ground truth of user 2
are also shown in Table III.

It can be noticed that the highest accuracy is achieved for
the renal cortex segmentation, which is due to the fact that
the renal cortex has more discriminative intensity, geometry,
and position. While the renal pelvis shows the lowest accu-
racy, which is mainly due to the fact that the shape of renal
pelvis varies a lot among subjects and the renal pelvis extends
out of the kidney.

In order to demonstrate the robustness of the proposed
method, the result for a kidney with a longer and narrower
shape than others is shown in Fig. 10. Thanks to the spatial
relationship information described by potential energy feature
and context information provided by ferns features, the pro-
posed method performed better than AAM-RF which was
trained on data with round shape, especially for renal cortex.
The renal cortex result of the proposed method [Fig. 10(d)]
has more uniform thickness and smoother inner surface than
the result of AAM-RF [Fig. 10(e)]. The DSCs for renal

cortex, column, medulla, and pelvis for this case by the pro-
posed method (88.81%, 82.57%, 88.62%, 76.65%) were a lit-
tle better than AAM-RF (88.61%, 83.57%, 83.99%, 71.39%)
and much better than OC-OAAM (83.79%, 76.24%, 85.41%,
80.18%).

In another case, the kidney is more like the shape of a tri-
angle rather than oval. But the proposed method can still seg-
ment the kidney into four components accurately as shown in
Fig. 11(c). The Dice coefficients for renal cortex, column,
medulla and pelvis for this case by the proposed method were
89.01%, 82.43%, 80.73%, and 80.78%. Although the result
seems good, there are still segmentation errors on the corner
of renal cortex, indicated by yellow arrows in Fig. 11(b). This
problem may be caused by the potential energy features
which are not flexible enough to fit the shape of the kidney.

TABLE I. The segmentation results as DSC, TPVF, and FPVF for different methods: the proposed method, RF with PEF, AAM-RF, and GC-OAAM. Proposed-I
and Proposed-II refer to two validation strategies of the proposed method (mean � std).

Proposed-I RF with PEF AAM-RF GC-OAAM Left kidney Proposed-II

DSC(%)

Cortex 90.16 � 1.46 84.93 � 2.19 91.61 � 1.45 84.65 � 2.27 89.76 � 2.68 89.92 � 1.78

Column 81.01 � 3.20 71.65 � 5.35 83.92 � 2.91 73.69 � 4.16 80.33 � 4.17 80.82 � 3.98

Medulla 86.81 � 3.64 83.92 � 4.07 82.22 � 2.22 77.29 � 8.05 86.48 � 3.11 86.75 � 3.57

Pelvis 77.60 � 4.90 61.07 � 11.04 75.19 � 6.93 72.07 � 8.60 78.97 � 7.06 76.74 � 5.18

Overall 83.90 � 3.30 75.39 � 5.66 83.23 � 3.38 76.92 � 5.77 83.88 � 4.25 83.56 � 3.62

TPVF(%)

Cortex 87.77 � 3.16 88.96 � 4.49 93.15 � 2.21 89.42 � 2.96 85.24 � 4.06 87.88 � 4.16

Column 84.05 � 8.08 63.47 � 8.11 83.09 � 4.64 80.67 � 5.11 80.17 � 7.53 83.71 � 6.99

Medulla 89.26 � 3.69 88.79 � 3.63 81.92 � 9.88 72.16 � 13.29 91.05 � 6.64 88.58 � 4.73

Pelvis 78.88 � 4.89 53.86 � 12.81 80.28 � 7.69 73.18 � 9.72 69.39 � 10.01 78.04 � 6.15

Overall 84.99 � 4.95 73.77 � 7.26 84.61 � 6.10 78.86 � 7.77 81.46 � 7.06 84.55 � 5.50

FPVF(%)

Cortex 0.31 � 0.17 1.85 � 0.49 0.37 � 0.16 1.34 � 0.89 0.37 � 0.14 0.32 � 0.20

Column 1.04 � 0.27 0.59 � 0.14 0.97 � 0.49 1.85 � 0.99 0.79 � 0.23 1.07 � 0.32

Medulla 0.98 � 0.62 1.38 � 0.73 0.55 � 0.15 0.71 � 0.53 1.11 � 0.46 0.93 � 0.55

Pelvis 0.08 � 0.04 0.04 � 0.03 0.30 � 0.20 0.15 � 0.13 0.09 � 0.10 0.08 � 0.04

Overall 0.60 � 0.27 0.96 � 0.35 0.55�0.25 1.01 � 0.63 0.59 � 0.23 0.60 � 0.28

TABLE II. Average computational time for testing.

Segmentation

Proposed method 3 sec

RF with PEF 3 sec

AAM-RF 20 sec

GC-OAAM More than 1 min

TABLE III. The performance indices of the proposed method as compared to
the ground truth of user 2 with leave-one-out validation strategy
(mean � std).

DSC(%) TPVF(%) FPVF(%)

Right kidney Cortex 89.97 � 1.22 89.06 � 2.95 0.42 � 0.21

Column 81.22 � 2.63 82.04 � 6.51 1.00 � 0.23

Medulla 85.24 � 5.80 87.67 � 5.64 1.03 � 0.56

Pelvis 77.30 � 7.09 76.70 � 4.50 0.13 � 0.06

Overall 83.43 � 4.18 83.86 � 4.90 0.64 � 0.26

Left kidney Cortex 89.69 � 2.62 85.55 � 4.16 0.41 � 0.15

Column 80.04 � 4.14 80.00 � 7.22 0.81 � 0.25

Medulla 86.03 � 3.03 90.32 � 2.72 1.10 � 0.64

Pelvis 78.66 � 4.87 70.79 � 7.60 0.12 � 0.16

Overall 83.60 � 3.66 81.66 � 5.42 0.61 � 0.30
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4. CONCLUSION AND DISCUSSION

This paper presents a fast and accurate automatic kidney
component segmentation method. The proposed method con-
sists of two steps: coarse segmentation of renal cortex and
fine segmentation of kidney components. In coarse segmen-
tation, results of random forests and ferns using 2D and 3D
features are combined in a simple way to get a coarse renal
cortex. Then the potential energy features are extracted from
the coarse renal cortex. In fine segmentation, the random for-
ests are updated using the potential energy features, and a
weighted forests-ferns method is applied to segment the kid-
ney into four components. Experiments conducted on a data-
set of 37 images showed the high accuracy and efficiency of
the proposed method.

We compared the proposed method to the method RF
with PEF to verify the effectiveness of the proposed
weighted forests-ferns strategy. The proposed method was

also compared to AAM-RF to prove the high efficiency
of our method. It takes only 3 s for the proposed method
to segment kidney into four parts, while AAM-RF need
about seven times as long to complete the same segmen-
tation task. Meanwhile, the proposed method is also bet-
ter than GC-OAAM.

It is important to notice that in the generation of potential
energy features, we assume that the kidney can be approxi-
mated as an ellipse. If diseases such as kidney tumor cause
dramatic change in kidney morphology, the proposed method
with potential energy features may not perform well. More
flexible potential energy features will be developed in the
near future to characterize the spatial distribution of kidney
tissues and other organs more accurately.

Besides, the small size of data set used in this paper is
another limitation. It potentially can lead to positively biased
results. In the near future, we will validate the proposed
method on data sets both large in number and in variety, as

FIG. 10. A case where the kidney has a narrower shape (a) than other cases (b). (b) shows four typical kidneys in the same position. (a) and (b) show the same
position of different kidneys. (c) is the ground truth. (d) is the result of the proposed method. (e) and (f) are the results of AAM-RF and GC-OAAM. The arrows
show that the renal cortex result of the proposed method (d) has more uniform thickness and smoother inner surface than the results of other methods. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

FIG. 11. A case where the kidney shape is different from others, but the segmentation result is good. (a) the ROI of the original image. (b) is the ground truth. (c),
(d), and (e) show the segmentation results of the proposed method, AAM-RF, and OC-OAAM respectively. The arrows in (c) show that there are still segmenta-
tion errors on the corner of renal cortex by the proposed method. This problem is caused by the potential energy features which are not flexible enough to fit the
shape of the kidney. [Color figure can be viewed at wileyonlinelibrary.com]
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well as use an independent test set, to verify its effectiveness
and robustness.

ACKNOWLEDGMENTS

This work has been supported in part by the National Nat-
ural Science Foundation of China (NSFC) under Grant
61622114, 61401294, 61401293, 81371629, 81401472, in part
by the National Basic Research Program of China (973 Pro-
gram) under Grant 2014CB748600, and in part by Natural
Science Foundation of the Jiangsu Province under Grant
BK20140052.

*These authors contribute equally.
a)Author to whom correspondence should be addressed. Electronic mail:
xjchen@suda.edu.cn.

REFERENCES

1. Clapp WL. Renal anatomy. In: Zhou XJ, Laszik Z, Nadasdy T, D’Agati
VD, Silva FG, eds. Silva’s Diagnostic Renal Pathology. New York, NY:
Cambridge University Press; 2009:1–10.

2. Siemer S, Lahme S, Altziebler S, et al. Efficacy and safety of tachosilas
haemostatic treatment versus standard suturing in kidney tumour resec-
tion: a randomised prospective study. Eur Urol. 2007;52:1156–1163.

3. Jun L, Xiaodong Z, Erping L. Study on differential diagnosis of
renal column hypertrophy and renal tumors by pulsed subtraction
contrast-enhanced ultrasonography, Chinese. J Ultras Med.
2006;22:308–310.

4. Hart T, Gorry M, Hart P, et al. Mutations of the UMOD gene are
responsible for medullary cystic kidney disease 2 and familial juvenile
hyperuricaemic nephropathy. J Med Genet. 2002;39:882–892.

5. Bennington J, Beckwith J. Tumors of the Kidney, Renal Pelvis, and
Ureter. Washington, DC: Armed Forces Institute of Pathology; 1975.

6. Freiman M, Kronman A, Esses SJ, Joskowicz L, Sosna J. Non-para-
metric iterative model constraint graph min-cut for automatic kidney
segmentation. In Proc. of the 13th Int. Conf. of Medical Image Comput-
ing and Computed Aided Interventions, MICCAI 2010, Part III, LNCS
6363, pp. 73–80; 2010.

7. Lin DT, Lei CC, Hung SW. Computer-aided kidney segmentation on
abdominal CT images. IEEE Trans Inf Technol Biomed. 2006;10:59–65.

8. Ali AM, Farag AA, El-Baz AS. Graph Cuts Framework for kidney seg-
mentation with prior shape constraints. MICCAI, 384-392; 2007.

9. Tang Y, Jackson HA, De Filippo RE, Nelson MD, Moats RA. Auto-
matic renal segmentation applied in pediatric MR Urography. IJIIP.
2010;1:12–19.

10. Xie J, Jiang Y, Tsui H. Segmentation of kidney from ultrasound images
based on texture and shape priors. IEEE Trans Med Imag. 2005;24:45–57.

11. Cuingnet R, Prevost R, Lesage D, et al. Automatic detection and
segmentation of kidneys in 3D CT images using random forests.
Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2012. Springer Berlin Heidelberg, 66-74; 2012.

12. Chen X, Summers MR, Cho M, Bagci U, Yao J. An automatic method
for renal cortex segmentation on CT images. Acad Radiol. 2012;19:562–
570.

13. Will S, Martirosian P, W€urslin C, Schick F. Automated segmentation
and volumetric analysis of renal cortex, medulla, and pelvis based on
non-contrast-enhanced T1-and T2-weighted MR images. Magma.
2014;27:445–454.

14. Yang X, Le Minh H, Cheng T, Sung KH, Liu W. Automatic segmenta-
tion of renal compartments in DCE-MRI images. In: Medical Image
Computing and Computer-Assisted Intervention 2015. Berlin, Heidel-
berg: Springer; 2015:3–11.

15. Falcao A, Udupa J, Samarasekera S, Sharma S, Hirsch B, Lotufo R.
User-steered imagesegmentation paradigms: live wire and live lane.
Graph Models Image Process. 1998;60:233–260.

16. Jin C, Shi F, Xiang D, Chen X. 3D fast automatic segmentation of kid-
ney based on modified AAM and random forest. IEEE Trans Med Imag.
2016;35:1395–1407.

17. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
18. Deng H, Runger G. Gene selection with guided regularized random for-

est. Pattern Recognit. 2013;46:3483–3489.
19. Gall J, Yao A, Ravazi N, Van Gool L, Lempitsky V. Hough forests for

object detection, tracking action recognition. IEEE Trans Pattern Anal
Mach Intell. 2011;33:2188–2202.

20. Shotton J, Johnson M, Cipolla R. Semantic textion forests for
image categorization and segmentation. IEEE conf. CVPR, 2008, 1-
8; 2008.

21. Lepetit V, Fua P. Keypoint recognition using randomized trees. IEEE
Trans Pattern Anal Mach Intell. 2006;28:1465–1479.

22. D�ıaz-Uriarte R, De Andres SA. Gene selection and classification of
microarray data using random forest. BMC Bioinform. 2006;7:3.

23. Chen X, Liu M. Prediction of protein–protein interactions using
random decision forest framework. Bioinformatics. 2005;21:4394–
4400.

24. Kandaswamy K, Chou K, Martinetz T, et al. AFP-Pred: a random forest
approach for predicting antifreeze proteins from sequence-derived prop-
erties. J Theoret Biol. 2011;270:56–62.

25. Yaqub M, Javaid M, Cooper C, Noble J. Investigation of the role of fea-
ture selection and weighted voting in random forests for 3-D volumetric
segmentation. IEEE Trans Med Imag. 2014;33:258–271.

26. Lindner C, Thiagarajah S, Wilkinson J, Wallis G, Cootes T. Fully auto-
matic segmentation of the proximal femur using random forest regres-
sion voting. IEEE Trans Med Imag. 2013;32:1462–1472.

27. Mualla F, Sch€oll S, Sommerfeldt B, Maier A, Hornegger J. Automatic
cell detection in bright-field microscope images using SIFT, random for-
ests, and hierarchical clustering. IEEE Trans Med Imag. 2013;32:2274–
2286.

28. Iglesias J, Liu C, Thompson P, Tu Z. Robust brain extraction across
datasets and comparison with publicly available methods. IEEE Trans
Med Imag. 2011;30:1617–1634.

29. Ȍzuysal M, Calonder M, Lepetit V, Fua P. Fast keypoint recognition
using random ferns. IEEE Trans Pattern Anal Mach Intell. 2010;32:448–
461.

30. Pauly O, Glocker B, Criminisi A, et al. Fast multiple organ detection
and localization in whole-body MR dixon sequences. In Medical Image
Computing and Computer-Assisted Intervention. Springer Berlin Hei-
delberg, 239-247; 2011.

31. Ballard DH. Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognit. 1981;13:111–122.

32. Khoshelham K. Extending Generalized Hough Transform to detect 3D
objects in laser range data. ISPRS Workshop on Laser Scanning 2007
and SilviLaser 2007, Espoo, Sep 12-14; 2007, Finland.

33. Ju W, Xiang D, Zhang B, Wang L, Kopriva I, Chen X. Random walk
and graph cut for co-segmentation of lung tumor on PET-CT images.
IEEE Trans Image Process. 2015;24:5854–5867.

Medical Physics, 44 (12), December 2017

6363 Jin et al.: Kidney segmentation by random forests/ferns 6363


	1. Intro�duc�tion
	2. Method
	2.A. Coarse seg�men�ta�tion of renal cor�tex
	2.A.1. ROI extrac�tion
	2.A.2. Fea�ture extrac�tion

	fig1
	fig2
	2.A.3. Forests and ferns clas�si�fi�ca�tion
	2.A.4. Poten�tial energy fea�tures

	fig3
	fig4
	2.B. Fine seg�men�ta�tion of kid�ney com�po�nents

	3. Exper�i�ment and results
	3.A. Image dataset and ground truth
	fig5
	fig6
	fig7
	3.B. Imple�men�ta�tion details
	3.C. Results and eval�u�a�tion
	fig8
	fig9
	tbl1
	tbl2
	tbl3

	4. Con�clu�sion and dis�cus�sion
	fig10
	fig11

	 Acknowl�edg�ments
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33


